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The triplet structure invariant is estimated via the method of joint probability

distribution functions when a model structure is available. The six-variate

probability distribution function P(Eh, Ek, E�h�k, Eph, Epk, Ep,�h�k) is studied

under the condition that imperfect isomorphism between the target and model

structures exist. The results are compared with those available in the literature,

which were obtained under the condition of perfect isomorphism. It is shown

that the new formalism is more suitable for real cases, where perfect

isomorphism is very rare.

1. Symbols and abbreviations

N: number of atoms in the unit cell for the target structure

(this is the crystal structure we want to solve).

Np: number of atoms in the unit cell for the model structure

(this corresponds to the structural model available at a given

step of the phasing process). Usually Np � N.

fj, j = 1, . . . ., N: atomic scattering factors for the target

structure (temperature factor included).P
N1,

P
N2,

P
N3 =

PN
j¼1 f 2

j ðhÞ,
PN

j¼1 f 2
j ðkÞ,

PN
j¼1 f 2

j ðhþ kÞ,

respectively.P
p1,

P
p2,

P
p3 =

PNp
j¼1 f 2

j ðhÞ,
PNp

j¼1 f 2
j ðkÞ,

PNp
j¼1 f 2

j ðhþ kÞ,

respectively.

tðh; kÞ = ½
PN

j¼1 fjðhÞfjðkÞfjðhþ kÞ�=ð
P

N1

P
N2

P
N3 Þ

1=2
. In

practical cases tðh; kÞ is approximated by 1=ðNeqÞ
1=2
¼

ð
PN

j¼1 Z3
j Þ=ð

PN
j¼1 Z2

j Þ
3=2, where Zj is the atomic number of the

jth atom.

tpðh; kÞ = ½
PNp

j¼1 fjðhÞfjðkÞfjðhþ kÞ�=ð
P

p1

P
p2

P
p3 Þ

1=2
, usually

approximated by 1=ðNp;eqÞ
1=2
¼ ð

PNp
j¼1 Z3

j Þ=ð
PNp

j¼1 Z2
j Þ

3=2.

F ¼
PN

j¼1 fj exp½2�ihðrpj þ�rjÞ� = jFj expði’Þ: structure factor

of the target structure.

�rj is the misfit between the atomic position rj in the target

and the corresponding position in the model structure.

Fp ¼
PNp

j¼1 fj expð2�ihrpjÞ = jFpj expði’pÞ, where rpj are the

atomic positions in the model structure.

E = A + iB = R expði’Þ, Ep = Ap + iBp = Rp expði’pÞ:

normalized structure factors of F and Fp, respectively.

Dh ¼ hcosð2�h�rÞi: the average is performed per resolution

shell. If Dh ¼ 1, the model and target structure positions

coincide.

�A ¼ Dð�p=�NÞ
1=2: �A is a statistical estimate of the correla-

tion between the model and target structure. Ideally �A ¼ 0

for uncorrelated models, �A ¼ 1 for identical model and target

structures.

�2
R ¼ hj�j

2
i=
P

N : hj�j2i is the measurement error.

e ¼ 1þ �2
R.

Ii(x): modified Bessel function of order i.

m = hcosð’� ’pÞi = I1ðXÞ=I0ðXÞ, where X = 2�ARRp

�ðe� �2
AÞ
�1.

� ¼ ’h þ ’k þ ’�h�k.

�p ¼ ’ph þ ’pk þ ’p;�h�k.

DM: direct methods.

2. Introduction

Cochran’s (1955) formula for the estimation of the triplet

phase invariants, i.e.

Pð�jRh;Rk;R�h�kÞ � ½2�I0ðGÞ�
�1 expðG cos �Þ; ð1Þ

with

G ¼
2RhRkRhþk

N1=2
;

has been the probabilistic basis for the main DM tool, the

tangent formula (Hauptman & Karle, 1956; Karle & Karle,

1966). Equation (1) has been derived in the absence of any

structural model, i.e., it is only able to exploit the normalized

moduli of the observed structure factors. The coefficient

1=N1=2 is strictly valid only for equal-atom structures: in the

most general case 1=N1=2 should be replaced by tðh; kÞ, which,

in accordance with our notation, may be approximated by

1=ðNeqÞ
1=2.

Over the last 40 years, thanks to the efforts of many authors,

DM have been enriched by new tools: neighbourhoods
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(Hauptman, 1976) and representation (Giacovazzo, 1977,

1980) approaches provided the theoretical basis for the use of

seminvariants and invariants of higher order, and allowed a

remarkable improvement of the Cochran triplet phase esti-

mates (e.g., via the so-called P10 formula: see Cascarano et al.,

1984).

Dual-space techniques (Miller et al., 1993; Sheldrick, 1998;

Burla et al., 2005; Yao et al., 2006) combined DM with real-

space procedures, with a further gain in efficiency. As a result,

DM solved in practice the phase problem at least for struc-

tures up to 1000 atoms in the asymmetric unit.

The literature on DM is immense and cannot exhaustively

be quoted here: the reader is referred to Giacovazzo (1998)

for a general review. We only state here that the success of DM

for small- and medium-size structures was also the reason for a

general loss of interest: they did the job so well that supple-

mentary investigations were considered to be unnecessary. In

more recent years, attention has mainly focused on:

(i) Alternative phasing techniques like charge flipping

(Oszlányi & Süto��, 2004, 2005; Palatinus et al., 2006; Palatinus &

Chapuis, 2007; Dumas & van der Lee, 2008) and VLD (Vive la

difference) (Burla, Caliandro et al., 2010; Burla, Giacovazzo &

Polidori, 2010; Burla, Giacovazzo & Polidori, 2011; Burla,

Carrozzini et al., 2011). For such approaches a deep theoretical

knowledge of invariants and seminvariant theories is no

longer necessary. The simplicity of the algorithms is very

appealing and boosted their popularity. The program codes

mostly require effective fast Fourier transform (FFT) algo-

rithms and a limited number of instructions.

(ii) Patterson deconvolution techniques (Buerger, 1959),

eventually based on the implication transformations and on

superposition techniques (Richardson & Jacobson, 1987;

Pavelčı́k et al., 1992). In the evolved form they proved to be

highly competitive both for ab initio protein phasing (Burla et

al., 2005, 2006; Caliandro et al., 2008) and for finding the

substructure in multiple-wavelength anomalous scattering

(MAD) techniques (Burla et al., 2007).

The question now is: the Cochran formula was derived in

the absence of a structure model. Can this formula be replaced

by a more useful expression if a model structure is available?

Formulas for estimating triplet invariants given a model are

already known. The investigation started with Main (1976,

1979) [see also Heinerman (1977) and Heinerman et al.

(1977)]. The most general treatment was described by

Giacovazzo (1983), who studied the conditional distribution

PðEh;Ek;E�h�kjEph;Epk;Ep;�h�kÞ ð2Þ

under the following hypotheses:

(i) only one set of diffraction data is measured (the target

set); structure factors of the partial structure, in modulus and

phase, are calculated from the model;

(ii) the reflection indices as well as the coordinates rpj, j =

1, . . . , p, are fixed known parameters;

(iii) p positional vectors of the target structure perfectly

coincide with the p vectors of the model;

(iv) the atomic positions rj, j = p + 1, . . . , N are the primitive

random variables of the probabilistic approach, uniformly

distributed in the unit cell.

The aim of the method is to facilitate the recovery of the

target structure when a highly correlated model is available.

The approach was successfully tested (Camalli et al., 1985) but

the simultaneous success of dual-space methods made it

obsolete. Under the conditions (i)–(iv) some structural para-

meters are perfectly defined: e.g. the scattering powers of the

difference (target minus model) structure,P
qi ¼

P
Ni �

P
pi; i ¼ 1; 2; 3;

and the corresponding equivalent number of atoms Nq;eq

defined by

1

ðNq;eqÞ
1=2
¼

PN
j¼Npþ1 Z3

j

ð
PN

j¼Npþ1 Z2
j Þ

3=2
: ð3Þ

From the conditional distribution (2) the following estimate

for ’h was derived:

Pð’hj . . .Þ ¼ ½2�I0ðGhÞ�
�1 exp½Gh cosð’h � �hÞ�; ð4Þ

where

G2
h ¼ a2

h þ b2
h;

ah ¼ 2Rh

�
�0Rph cos ’ph þ

2

ðNq;eqÞ
1=2

�
�1RkRhþk cosð’k þ ’hþkÞ

� �2RkRphþk cosð’k þ ’phþkÞ � �3RpkRhþk cosð’pk þ ’hþkÞ

þ �4RpkRphþk cosð’pk þ ’phþkÞ

��

bh ¼ 2Rh

�
�0Rph sin ’ph þ

2

ðNq;eqÞ
1=2

�
� �1RkRhþk sinð’k þ ’hþkÞ

þ �2RkRphþk sinð’k þ ’phþkÞ þ �3RpkRhþk sinð’pk þ ’hþkÞ

� �4RpkRphþk sinð’pk þ ’phþkÞ

��
;

cos �h ¼ ah=Gh; sin �h ¼ bh=Gh;

�0 ¼
ð
P

N1

P
p1 Þ

1=2P
q1

; �1 ¼

P
N1

P
N2

P
N3P

q1

P
q2

P
q3

 !1=2

;

�2 ¼

P
N1

P
N2

P
p3P

q1

P
q2

P
q3

 !1=2

; �3 ¼

P
N1

P
p2

P
N3P

q1

P
q2

P
q3

 !1=2

;

�4 ¼

P
N1

P
p2

P
p3P

q1

P
q2

P
q3

 !1=2

:

A related probabilistic approach was described by Hauptman

(1982). He integrated DM with isomorphous-replacement

techniques under the following assumptions:

(a) two sets of diffraction amplitudes are measured, corre-

sponding to protein and derivative crystals: no model, and

therefore no phase information is available;

(b) reflection indices are the primitive random variables,

while the atomic positions in both the structures are unknown

fixed parameters;
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(c) the isomorphous derivative is obtained by addition of

heavy atoms, with perfect isomorphism between the two

crystals. That is, protein atoms occupy the same positions as

the corresponding atoms in the derivative.

Under the above conditions the distribution

P Edh;Edk;Ed;�h�k;EPh;EPk;EP;�h�k

� �
ð5Þ

was studied, where subscripts d and capital P stand for deri-

vative and protein, respectively. The protein triplet phase �P

was estimated by Hauptman via the conditional distribution

P �PjRdh;Rdk;Rd;�h�k;RPh;RPk;RP;�h�k

� �
¼ 2�I0ðAPÞ expðAP cos �PÞ: ð6Þ

AP is described by a rather cumbersome algebraic expression

in Hauptman notation. We report here the simplified formula

obtained by Giacovazzo et al. (1988), which well approximates

the original expression:

AP ¼
2

ðNP;eqÞ
1=2

RP1RP2RP3

þ
2

ðNq;eqÞ
1=2

ðjFd1j � jFP1jÞðjFd2j � jFP2jÞðjFd3j � jFP3jÞ

ð
P

q1

P
q2

P
q3 Þ

1=2
:

ð7Þ

It is easily seen that the first term on right-hand side of (7) is

the standard Cochran parameter: the second term involves the

differences ðjFdij � jFPijÞ normalized with respect to the

scattering power of the difference structure (in this case

coincident with the heavy-atom substructure: accordinglyP
q ¼

P
H,where

P
H represents the scattering power of the

heavy atoms). Since 1=ðNq;eqÞ
1=2
� 1=ðNP;eqÞ

1=2, the second

term on the right-hand side of equation (7) is usually large and

dominant with respect to the first one. As a consequence,

protein triplet phases are no longer expected to be distributed

around 0: they may be accurately estimated as 0 or � according

to the sign of AP.

The reader will certainly have noticed that prior knowledge

of model moduli and phases is needed for estimating � from

distribution (2), while the estimate of �P via equation (6) does

not imply any prior phase knowledge, but requires two sets of

diffraction data, corresponding to protein and derivative. This

observation would suggest that the Hauptman and Giaco-

vazzo approaches are based on different assumptions and

have different aims, but it may be shown that they are strictly

related. Indeed:

(1) The protein and derivative structures in the Hauptman

approach play the same roles as the partial and target struc-

tures in the Giacovazzo approach, respectively.

(2) Both approaches rely on the same joint probability

distribution:

P Eh;Ek;E�h�k;Eph;Epk;Ep;�h�k

� �
: ð8Þ

Choosing the conditional P EhjEk;E�h�k;Eph;Epk;Ep;�h�k

� �
leads to Giacovazzo’s formula, choosing Pð�pjRh;Rk;R�h�k;
Rph;Rpk;Rp;�h�kÞ leads to Hautpman’s distribution. There-

fore, in accordance with statement (1), Pð�pjRh;Rk;R�h�k;

Rph;Rpk;Rp;�h�kÞ coincides with the Hauptman distribution

P �PjRdh;Rdk;Rd;�h�k;RPh;RPk;RP;�h�k

� �
.

(3) Both approaches exploit eight types of triplet cosines,

say

cosð’h þ ’k þ ’�h�kÞ; cosð’h þ ’k þ ’p�h�kÞ;

cosð’h þ ’pk þ ’�h�kÞ; cosð’ph þ ’k þ ’�h�kÞ;

cosð’h þ ’pk þ ’p�h�kÞ; cosð’ph þ ’k þ ’p�h�kÞ;

cosð’ph þ ’pk þ ’�h�kÞ; cosð’ph þ ’pk þ ’p�h�kÞ: ð9Þ

What are the limits of the two approaches? For both of them

the Np atomic positions of the model perfectly coincide with

the corresponding atomic positions in the target structure.

This restriction is too limiting for real cases: a theory of triplet

phase invariants in which the above hypothesis is relaxed may

better fit a real scenario and contribute to DM renovation. In

accordance with the above statements, a generalized expres-

sion of the distribution (8) would generalize both the

Hauptman (1982) and Giacovazzo (1983) approaches. This is

the first aim of this paper.

The mathematical work necessary for deriving such distri-

butions is the occasion for establishing previously unnoticed

properties connected to the assumptions under which the joint

probability distributions are derived. For example, hypotheses

on the primitive random variables so far considered mathe-

matically equivalent are shown to provide different distribu-

tions and therefore different conclusive phasing formulas. This

is the second aim of this paper. The theoretical results so

obtained allow one to postulate a possible renovation of the

present DM procedures.

3. The joint probability distribution P(Eh, Ek, E�h�k, Eph,
Epk, Ep,�h�k) in the case of imperfect isomorphism:
hypothesis I

We will calculate the conditional joint probability distribution

(8) under the following assumptions:

(1) rpj, j = 1, . . . , Np, are the atomic positional parameters of

the model structure. The rpj’s are primitive random variables

of our approach, uniformly distributed in the unit cell.

(2) rj, j = 1, . . . , N are the atomic positional parameters of

the target structure. Np of them, say rj = rpj + �rj, j = 1, . . . , Np,

are riding variables: they are correlated with the corre-

sponding rpj’s through local positional errors �rj’s. The �rj

moduli are restrained to assume sufficiently small values to

secure, at least at low resolution, isomorphism between the

model and target structures. The positional parameters rj,

j = Np + 1, . . . , N, are primitive random variables uniformly

distributed in the unit cell.

(3) Two supplementary primitive random variables, � and

#, are introduced to take into account the experimental

uncertainty of the observed structure-factor moduli. We will

write for the target structure

F ¼
PN
j¼1

fj exp 2�ihrj þ � expði#Þ:
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(4) All the primitive random variables are assumed to be

statistically independent of each other.

The above assumptions (allowing different degrees of non-

isomorphism between the model and target structures) have

been already used by Srinivasan & Ramachandran (1965) and

by Caliandro et al. (2005) for the derivation of the joint

probability distribution P Eh;Eph

� �
, a very important tool for

improving the model structure. It suggests optimal weights for

calculated phases via the parameter �A ¼ Dð�p=�NÞ
1=2, the

value of which depends on the correlation between the model

and target structures.

In all the probabilistic approaches involving triplet invar-

iants the assumptions (1)–(4) have never been used. The

condition Di = 1 for i = 1, 2, 3 (or equivalently, �rj = 0 for

j = 1, . . . , Np), was always introduced, according to which the

positions of the Np atoms of the model perfectly coincide with

Np atoms of the target structure. In this paper, according to

conditions (1)–(4), we break down this condition and use the

following definitions (from now on hypothesis I):

A ¼

�PNp

j¼1

fj cos½2�hðrpj þ�rjÞ� þ
PN

j¼Npþ1

fj cos 2�hrj

þ j�j cos#

��
"�N

� �1=2
;

B ¼

�PNp

j¼1

fj sin½2�hðrpj þ�rjÞ� þ
PN

j¼Npþ1

fj sin 2�hrj

þ j�j sin#

��
"�N

� �1=2
;

Ap ¼
PNp

j¼1

fj cos 2�hrpj= "�p

� �1=2
;

Bp ¼
PNp

j¼1

fj sin 2�hrpj= "�p

� �1=2
;

where " is the Wilson statistical weight. To simplify the

resulting formulas we will use the following notation:

Ei ¼ Ai þ iBi ¼ Eh;Ek;E�h�k, respectively, for i = 1, 2, 3.

Epi ¼ Api þ iBpi ¼ Eph;Epk;Ep;�h�k, respectively, for i = 1,

2, 3.

Ri ¼ jEij, Rpi ¼ jEpij, i = 1, 2, 3.

fi; i ¼ 1; 2; 3 are equal to f ðhÞ, f ðkÞ, f ðhþ kÞ, respectively.

�A1 ¼ �AðhÞ, �A2 ¼ �AðkÞ, �A3 ¼ �Aðhþ kÞ.

We will calculate the joint probability distribution

PðAi;Api;Bi;Bpi; i ¼ 1; 2; 3Þ, the characteristic function of

which is

Cðui; upi; vi; vpi; i ¼ 1; 2; 3Þ

¼

	
exp

�
i
P3

i¼1

ðuiAi þ upiApi þ viBi þ vpiBpiÞ

�


¼ exp

�
� ð1=4Þ

P3

i¼1

½eiðu
2
i þ v2

i Þ þ u2
pi þ v2

pi

þ 2�Aiðuiupi þ vivpiÞ�

� ½i=4ðNeqÞ
1=2
�ðu1u2u3 � v1v2u3 � v1u2v3 � u1v2v3Þ

� ½i=4ðNp;eqÞ
1=2
�½�A2�A3ðup1u2u3 � vp1v2u3

� vp1u2v3 � up1v2v3Þ

þ �A1�A3ðu1up2u3 � v1vp2u3 � v1up2v3 � u1vp2v3Þ

þ �A1�A2ðu1u2up3 � v1v2up3 � v1u2vp3 � u1v2vp3Þ

þ �A3ðup1up2u3 � vp1vp2u3 � vp1up2v3 � up1vp2v3Þ

þ �A2ðup1u2up3 � vp1v2up3 � vp1u2vp3 � up1v2vp3Þ

þ �A1ðu1up2up3 � v1vp2up3 � v1up2vp3 � u1vp2vp3Þ

þ ðup1up2up3 � vp1vp2up3 � vp1up2vp3 � up1vp2vp3Þ�

�
; ð10Þ

where ui; upi; i ¼ 1; 2; 3, are carrying variables associated with

Ai, Api i = 1, 2, 3, respectively; vi; vpi; i ¼ 1; 2; 3, are carrying

variables associated with Bi, Bpi, i = 1, 2, 3, respectively.

The Fourier transform of equation (10) in terms of polar

coordinates provides the required joint probability distribu-

tion:

PðRi;Rpi; ’i; ’pi; i ¼ 1; 2; 3Þ

¼
Y3

i¼1

RiRpi

ei � �
2
Ai

exp

�
�
X3

i¼1

1

ei � �
2
Ai

� ½R2
i þ eiR

2
pi � 2�AiRiRpi cosð’i � ’piÞ�

�

� exp

�
2

ðNp;eqÞ
1=2

Rp1Rp2Rp3 cosð’p1 þ ’p2 þ ’p3Þ

þ 2�½R1R2R3 cosð’1 þ ’2 þ ’3Þ

� �A3R1R2Rp3 cosð’1 þ ’2 þ ’p3Þ

� �A2R1Rp2R3 cosð’1 þ ’p2 þ ’3Þ

� �A1Rp1R2R3 cosð’p1 þ ’2 þ ’3Þ

þ �A2�A3R1Rp2Rp3 cosð’1 þ ’p2 þ ’p3Þ

þ �A1�A3Rp1R2Rp3 cosð’p1 þ ’2 þ ’p3Þ

þ �A1�A2Rp1Rp2R3 cosð’p1 þ ’p2 þ ’3Þ

� �A1�A2�A3Rp1Rp2Rp3 cosð’p1 þ ’p2 þ ’p3Þ�

�
; ð11Þ

where

� ¼
1

ðe1 � �
2
A1Þðe2 � �

2
A2Þðe3 � �

2
A3Þ

�
1

ðNeqÞ
1=2
�

1

ðNp;eqÞ
1=2
�A1�A2�A3

 !
:

Equation (11) is the distribution we were looking for.
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The parameter � plays a central role in equation (11) and

deserves to be illustrated. It is easy shown (the reader should

use the definitions given in x1) that

� ¼
Y3

i¼1

 P
Ni

ei

P
Ni �D2

i

P
pi

!1=2

�

 PN
j¼1 fj1fj2fj3 �D1D2D3

PNp
j¼1 fj1fj2fj3Q3

i¼1

ðei

P
Ni �D2

i

P
pi Þ

1=2

!
: ð12Þ

We notice:

(a) The term ðei

P
Ni �D2

i

P
piÞ is the expected scattering

power of the difference structure for the ith reflection (sayP
qi), given hypothesis I. Indeed ei

P
Ni is the scattering power

of the target structure given the measurement error, and
P

pi

is the equivalent scattering factor of the model structure. The

difference ðei

P
Ni�D2

i

P
piÞ takes into account the correlation

between target and model structure: if Di ¼ 1 and ei � 1 thenP
qi ¼

P
Ni�

P
pi, the classical value in the literature. If no

correlation exists, the scattering power of the difference

structure increases and becomes equal to that of the target

structure (say
P

qi ¼ ei

P
Ni). It is immediately seen that

P
qi

does not coincide with the value
P

pið1� 2DiÞ þ
P

Ni

obtained by Burla, Caliandro et al., 2010) via the study of the

joint probability distribution P Eh;Eph;Eqh

� �
: the discrepancy

between the two estimates is the effect of the different amount

of prior information available in the two distributions

P Eh;Eph

� �
and P Eh;Eph;Eqh

� �
.

(b) The term

PN
j¼1 fj1fj2fj3 �D1D2D3

Pp
j¼1 fj1fj2fj3Q3

i¼1 ðei

P
Ni �D2

i

P
pi Þ

1=2
ð13Þ

may be identified with 1=ðNq;eqÞ
1=2. Indeed, if Di; ei ¼ 1 for i =

1, 2, 3, then equation (13) reduces to equation (3); if the

correlation between the target and model structures vanishes

then Di ¼ 0 for i = 1, 2, 3, and equation (13) reduces to 1=N1=2,

a value larger than 1=ðNqÞ
1=2. In this condition the triplet phase

reliability attains its minimum.

4. New phasing tools

The general distribution (11) may be used for obtaining two

basic phasing formulas, the first for estimating triplet phase

invariants given six diffraction moduli and the second for

estimating ’h given six moduli and five phases.

4.1. Triplet invariants estimates

From equation (11) standard mathematical techniques lead

to the conditional distribution

Pð�jR1;R2;R3;Rp1;Rp2;Rp3Þ � ½2�I0ðGÞ�
�1 exp½G cos ��;

ð14Þ

where

G ¼
2

ðNp;eqÞ
1=2

m1m2m3Rp1Rp2Rp3

þ 2�½ðR1 � �A1m1Rp1ÞðR2 � �A2m2Rp2ÞðR3 � �A3m3Rp3Þ�:

ð15Þ

Furthermore,

Pð�pjR1;R2;R3;Rp1;Rp2;Rp3Þ � ½2�I0ðGpÞ�
�1 expðGp cos �pÞ;

ð16Þ

where

Gp ¼
2

ðNp;eqÞ
1=2

Rp1Rp2Rp3

þ 2�½ðm1R1 � �A1Rp1Þðm2R2 � �A2Rp2Þðm3R3 � �A3Rp3Þ�:

ð17Þ

Equations (14)–(17) suggest the following conclusions:

(i) If a model is available which is (weakly or strongly)

correlated with the target structure, the triplet phase � is no

longer expected to be always distributed around zero, as

suggested by Cochran formula. Indeed the distribution (14) is

centered around � (rather than around zero) when the second

term on the right-hand side of equation (15) is sufficiently

negative. The percentage of triplet phases close to � depends

on the correlation between the target and model structures.

(ii) If diffraction data for two isomorphous structures have

been measured and no model is available, then the triplet

phase �p is no longer expected to be always distributed

around zero. Indeed, the distribution (16) is centered around

� (rather than around zero) when the second term on the

right-hand side of equation (17) is sufficiently negative. Again,

the percentage of triplet phases close to � depends on the

correlation between the target and model structures.

Let us simplify our expressions (15) and (17) by assuming

ei ¼ 1 for i = 1, 2, 3: this is a reasonable assumption when the

diffraction amplitudes are sufficiently large. We will consider

two extreme cases:

(1) The target and model structure completely uncorre-

lated. In this case Di = 0 for i = 1, 2, 3, �Ai � mi � 0 for

i = 1, 2, 3, � ¼ 1=ðNeqÞ
1=2, G ¼ ½2=ðNeqÞ

1=2
�R1R2R3 and

Gp ¼ ½2=ðNp;eqÞ
1=2
�Rp1Rp2Rp3. In simple words, and in accor-

dance with expectations, a uncorrelated model does not

provide any information supplementary to that contained in

the Cochran formula.

(2) The model and target structure are well correlated: i.e.,

the Np atomic positions of the model perfectly coincide with

corresponding atomic positions in the target structure and the

scattering power of the model structure is non-negligible with

respect to the target. Then, for most of the reflections (i.e.,

those with largest intensity), Di = mi = 1 for i = 1, 2, 3. In this

case, the number of atoms in the difference structure is

properly defined by Nq = N�Np, or, in a more general way, by

Nq;eq (see x2): furthermore, the scattering power
P

q of the

difference structure reduces to
P

qi ¼
P

Ni �
P

pi for i = 1, 2,

3. We obtain
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�Ai ¼ ð
P

pi =
P

Ni Þ
1=2; � ¼

1

ðNq;eqÞ
1=2

P
N1

P
N2

P
N3P

q1

P
q2

P
q3

 !1=2

;

G ¼
2

ðNp;eqÞ
1=2

Rp1Rp2Rp3

þ
2

ðNq;eqÞ
1=2

ðjF1j � jFp1jÞðjF2j � jFp2jÞðjF3j � jFp3jÞ

ð
P

q1

P
q2

P
q3 Þ

1=2

ð18Þ

and

Gp ¼
2

ðNp;eqÞ
1=2

Rp1Rp2Rp3

þ
2

ðNq;eqÞ
1=2

ðjF1j � jFp1jÞðjF2j � jFp2jÞðjF3j � jFp3jÞ

ð
P

q1

P
q2

P
q3 Þ

1=2
:

ð19Þ

Equation (19) exactly coincides with equation (7) if the

subscript p is replaced by P and jFij by jFdij: accordingly, the

Hauptman formula may be considered a special case of

equation (19), valid only when Np atoms of the target structure

perfectly coincide with the Np atoms of the model.

For large structures, equations (15)–(17) suggest the

following conclusions: the second terms on the right-hand

sides of equations (15) and (17) may be dominant with respect

to the first terms. Thus, in protein cases, the triplet phase

estimations cannot be based on Cochran formula, but should

be allowed to benefit by the supplementary information

provided by a model, even if it is weakly correlated with the

target. The expressions (15)–(17) are therefore the general

relations to use: they require the prior knowledge of the �Ai

parameters, which in turn may be estimated by standard

statistical methods, as suggested by Read (1986) or Burla,

Giacovazzo, Mazzone et al. (2011).

4.2. Conditional phase estimates

From equation (11) the conditional distribution

P ’1jR1;R2;R3;Rp1;Rp2;Rp3; ’2; ’3; ’p1; ’p2; ’p3

� �
may be

obtained by standard techniques. We obtain

Pð’1j . . .Þ ¼ ½2�I0ðG1Þ�
�1 exp½G1 cosð’1 � �1Þ�; ð20Þ

where

G2
1 ¼ a2

1 þ a2
2;

a1 ¼ 2R1

�
�A1

e1 � �
2
A1

Rp1 cos ’p1 þ �½R2R3 cosð’2 þ ’3Þ

� �A3R2Rp3 cosð’2 þ ’p3Þ � �A2Rp2R3 cosð’p2 þ ’3Þ

þ �A2�A3Rp2Rp3 cosð’p2 þ ’p3Þ�

�
;

a2 ¼ 2R1

�
�A1

e1 � �
2
A1

Rp1 sin ’p1 þ �½�R2R3 sinð’2 þ ’3Þ

þ �A3R2Rp3 sinð’2 þ ’p3Þ þ �A2Rp2R3 sinð’p2 þ ’3Þ

� �A2�A3Rp2Rp3 sinð’p2 þ ’p3Þ�

�
;

tan �1 ¼ a2=a1:

If the model and target structures are uncorrelated, (i.e.,

�Ai � mi � 0, for i = 1, 2, 3) then � ¼ 1=ðNeqÞ
1=2, and

a1 ¼
2

ðNeqÞ
1=2

R1R2R3 cosð’2 þ ’3Þ;

a2 ¼ �
2

ðNeqÞ
1=2

R1R2R3 sinð’2 þ ’3Þ;

in agreement with the Cochran formula. The expressions for

a1 and a2 become much more useful if the correlation between

the target and model structures is not vanishing. In the

extreme case in which p atoms of the model perfectly coincide

with p atoms of the target, then for the most intense reflections

Di = mi = 1 for i = 1, 2, 3, and the distribution (4) is obtained.

This result shows that equation (4) is a particular case of

equation (20), only valid under conditions rarely met in

practice.

5. The new reliability parameters

The distribution (8) deals with normalized structure factors of

two isomorphous structures: as stated before, it is just for

convenience that they were called ‘target’ and ‘model’, just for

establishing a difference between the structure we want to

phase (target) and the structure suggested by some source of

information (model). From the mathematical point of view the

target and model structures play a symmetrical role in equa-

tion (8) (the reader can be more easily convinced if they

assume that p = N). In spite of this statement, equation (10)

shows a lack of symmetry: in the triplet cosine terms �Ai is

always associated to Rpi, while �AiRi, i = 1, 2, 3, are never

present. The asymmetry is due to the following basic

assumption (see x3): rj, j = 1, . . . , N, are random variables, the

first Np of which (say rj = rpj + �rj, j = 1, . . . , Np) are riding

variables, correlated with the corresponding rpj’s through local

positional errors �rj’s.

It may be worthwhile comparing the reliability parameters

(15) and (17) with (7). The first term on the right-hand side of

equation (7) coincides with the Cochran term, while the

second term is determined by structure-factor differences. As

an effect of the lack of isomorphism (i.e., the rj’s are variables

freely riding over the primitive random variables rpj’s), the

scenario is completely changed if we consider equation (15):

we can no longer speak of the Cochran term and of difference

terms. Indeed, the first term on the right-hand side of equation

(15) is the Cochran parameter multiplied by the weight

w ¼ m1m2m3, which may be very close to zero if the

isomorphism between the model and target structures is poor.
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Let us consider two asymptotic situations: if the isomorphism

is very poor, the Cochran term coincides with the second term

on the right-hand side of equation (15); if the isomorphism is

strong, the Cochran term coincides with the first term on the

right-hand side of equation (15). If the current situation is not

asymptotic, the Cochran contribution arises from both terms

on the right-hand side of equation (15).

Let us now compare the parameters (7) and (17). In

agreement with hypothesis 1, �p as calculated from distribu-

tion (16) does not suffer by riding effects, and the first term on

the right-hand side of equation (17) coincides with the tradi-

tional Cochran parameter for the model triplet.

6. The asymmetry of the distribution P(Eh, Ek, E�h�k,
Eph, Epk, Ep,�h�k)

The distribution (8) can be studied under a different

assumption (hypothesis 2): the target atomic positions rj, j = 1,

. . . , N, are primitive random variables, and rpj = rj + �rj, j = 1,

. . . , Np, are riding variables, correlated with the corresponding

rj’s through local positional errors �rj’s. In symbols

A ¼

�PN
j¼1

fj cos 2�hrj þ j�j cos#

��
"�N

� �1=2
;

B ¼

�PN
j¼1

fj sin 2�hrj þ j�j sin#

��
"�N

� �1=2
;

Ap ¼
PNp

j¼1

fj cos½2�hðrj þ�rjÞ�
�
"�p

� �1=2
;

Bp ¼
PNp

j¼1

fj sin½2�hðrj þ�rjÞ�
�
"�p

� �1=2
:

Of the two basic hypotheses, the first emphasizes that some

positional vectors of the target structure are distributed

around the model positional vectors, the second that the

model positional vectors (the only ones available during the

phasing process) are expected to be distributed around the

target positions. To see how the characteristic function (10)

changes under hypothesis 2, we calculate the value of

hAhAkAp�h�ki (the coefficient of u1u2up3Þ according to both

hypotheses. We obtain, according to the first,

hAhAkAp�h�ki

¼

	
1

ð
P

N1

P
N2

P
p3Þ

1=2

XNp

j¼1

fjðhÞfjðkÞfjðhþ kÞ

� cos 2�hðrpj þ�rjÞ cos 2�kðrpj þ�rjÞ cos½2�ðhþ kÞrpj�




¼
1

4

1

ðNp;eqÞ
1=2
�A1�A2;

and according to the second hypothesis,

hAhAkAp�h�ki

¼

	
1

ð
P

N1

P
N2

P
p3Þ

1=2

XNp

j¼1

fjðhÞfjðkÞfjðhþ kÞ

� cos 2�hrj cos 2�krj cos½2�ðhþ kÞðrj þ�rjÞ�




¼
1

4

1

ðNp;eqÞ
1=2
�A3:

As a consequence, under hypothesis 2, the following char-

acteristic function arises:

Cðui; upi; vi; vpi; i ¼ 1; 2; 3Þ

¼ exp

�
�

1

4

X3

i¼1

½eiðu
2
i þ v2

i Þ þ u2
pi þ v2

pi þ 2�Aiðuiupi þ vivpiÞ�

�
i

4ðNeqÞ
1=2
ðu1u2u3 � v1v2u3 � v1u2v3 � u1v2v3Þ

�
i

4ðNp;eqÞ
1=2
½�A1ðup1u2u3 � vp1v2u3 � vp1u2v3 � up1v2v3Þ

þ �A2ðu1up2u3 � v1vp2u3 � v1up2v3 � u1vp2v3Þ

þ �A3ðu1u2up3 � v1v2up3 � v1u2vp3 � u1v2vp3Þ

þ �A1�A2ðup1up2u3 � vp1vp2u3 � vp1up2v3 � up1vp2v3Þ

þ �A1�A3ðup1u2up3 � vp1v2up3 � vp1u2vp3 � up1v2vp3Þ

þ �A2�A3ðu1up2up3 � v1vp2up3 � v1up2vp3 � u1vp2vp3Þ

þ ðup1up2up3 � vp1vp2up3 � vp1up2vp3 � up1vp2vp3Þ�

�
: ð21Þ

The joint probability distribution corresponding to the

characteristic function (21) is certainly different from the

distribution (11), but it will be not calculated in this paper.

Indeed, we are mainly interested in estimating the target

given the model phases and that implies a selection of

the distribution to use. In real cases the parameters rpj are

perfectly available during the phasing process, as well as

the Rp and ’p values. In this situation the conditional prob-

ability Pð�pjR1;R2;R3;Rp1;Rp2;Rp3Þ adheres perfectly to

hypothesis 1.

An interesting detail is the following: the characteristic

functions (10) and (21) coincide up to terms of order N0: thus

the distribution P Eh;Eph

� �
, as obtained by Srinivasan &

Ramachandran (1965) and generalized by Caliandro et al.

(2005), does not change, regardless of whether we use

hypothesis 1 or 2.

7. Conclusions

The Cochran reliability parameter for triplet phase invariants

is based on the conditional probability distribution P(�| R1,

R2, R3): accordingly it cannot exploit the information

contained in the models eventually available during the

phasing process. In particular, during the tangent-formula

cycles phases progressively change: correspondently, in direct

space new structural models become available, but, according
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to the Cochran scheme, every triplet phase is constantly esti-

mated via the same probability parameter.

This paper establishes the theoretical bases for a radical

change of the traditional direct-methods approach: the

Cochran formula should no longer be necessary. Indeed the

new formulas (14)–(20) are based on the distributions

Pð�jR1;R2;R3;Rp1;Rp2;Rp3Þ

and

Pð’1jR1;R2;R3;Rp1;Rp2;Rp3; ’2; ’3; ’p1; ’p2; ’p3Þ;

respectively, which can take into account both the observa-

tions and the models progressively available during the

phasing process.

The application of equations (14)–(20) require the previous

estimate of the quality of the model. That is made via the

statistical approaches described by Read (1986) or Burla,

Giacovazzo, Mazzone et al. (2011). If the quality is poor (i.e.,

when the �Ai’s are close to zero), the model contribution in

equations (15), (17) and (20) will be weak, but it will increase

as soon as the �Ai values increase.

The practical use of equation (20) deserves some additional

remarks. Equation (20) provides a new value for ’1 given five

phases and six moduli. While ’p1, ’p2 and ’p3 are perfectly

known from the model, ’2 and ’3 are unknown because they

refer to the target structure. On the other hand, the assump-

tions ’2 � ’p2 and ’3 � ’p3:

(i) presuppose that a high correlation exists between target

and model: that is the less interesting case for this paper, which

aims at phasing the target also starting from weakly correlated

or uncorrelated model structures;

(ii) may trap the phase refinement away from the correct

values, probably not far from the initial ’p values. Again that

does not comply with the hypothesis that the model and target

structures may be weakly correlated or uncorrelated.

The problem may be solved exactly as proposed and

effectively used by the VLD algorithm, in which, given the

best available map (regardless of its quality), the corre-

sponding phases play the ’ role, while the ’p’s are obtained

from a suitably modified electron-density map (e.g. by Fourier

inversion of a small percentage of the map, that with the

largest density values). The application of equation (20) is

expected to progressively improve the phases ’ and therefore

the model phases ’p, as in VLD procedures.

If we consider phasing from a random model, the phasing

scenario may be the following: the procedure starts from a

random phase set, as in traditional direct-methods applica-

tions. Each cycle of tangent formula, based on equation (20),

would produce a new set of phases from which a model

electron-density map may be derived. This model may be used

to the improve the estimation of the triplet invariants, and so

on in a cyclic way. This practice is expected to make triplet

invariants more suitable for larger structures.
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